Role of the bga1-encoded extracellular {beta}-galactosidase of Hypocrea jecorina in cellulase induction by lactose.
نویسندگان
چکیده
Lactose is the only soluble and economically feasible carbon source for the production of cellulases or heterologous proteins regulated by cellulase expression signals by Hypocrea jecorina (Trichoderma reesei). We investigated the role of the major beta-galactosidase of H. jecorina in lactose metabolism and cellulase induction. A genomic copy of the bga1 gene was cloned, and this copy encodes a 1,023-amino-acid protein with a 20-amino-acid signal sequence. This protein has a molecular mass of 109.3 kDa, belongs to glycosyl hydrolase family 35, and is the major extracellular beta-galactosidase during growth on lactose. Its transcript was abundant during growth on l-arabinose and l-arabinitol but was much less common when the organism was grown on lactose, d-galactose, galactitol, d-xylose, and xylitol. Deltabga1 strains grow more slowly and accumulate less biomass on lactose, but the cellobiohydrolase I and II gene expression and the final cellulase yields were comparable to those of the parental strain. Overexpression of bga1 under the control of the pyruvate kinase promoter reduced the lag phase, increased growth on lactose, and limited transcription of cellobiohydrolases. We detected an additional extracellular beta-galactosidase activity that was not encoded by bga1 but no intracellular beta-galactosidase activity. In conclusion, cellulase production on lactose occurs when beta-galactosidase activity levels are low but decreases as the beta-galactosidase activities increase. The data indicate that bga1-encoded beta-galactosidase activity is a critical factor for cellulase production on lactose.
منابع مشابه
Role of the bga1-Encoded Extracellular -Galactosidase of Hypocrea jecorina in Cellulase Induction by Lactose
Lactose is the only soluble and economically feasible carbon source for the production of cellulases or heterologous proteins regulated by cellulase expression signals by Hypocrea jecorina (Trichoderma reesei). We investigated the role of the major -galactosidase of H. jecorina in lactose metabolism and cellulase induction. A genomic copy of the bga1 gene was cloned, and this copy encodes a 1,0...
متن کاملInduction of extracellular beta-galactosidase (Bga1) formation by D-galactose in Hypocrea jecorina is mediated by galactitol.
The ability of Hypocrea jecorina (Trichoderma reesei) to grow on lactose strongly depends on the formation of an extracellular glycoside hydrolase (GH) family 35 beta-galactosidase, encoded by the bga1 gene. Previous studies, using batch or transfer cultures of pregrown cells, had shown that bga1 is induced by lactose and d-galactose, but to a lesser extent by galactitol. To test whether the in...
متن کاملLack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei): a key to cellulase gene expression on lactose.
The heterodisaccharide lactose (1,4-O-beta-D-galactopyranosyl-D-glucose) induces cellulase formation in the ascomycete Hypocrea jecorina (= Trichoderma reesei). Lactose assimilation is slow, and the assimilation of its beta-D-galactose moiety depends mainly on the operation of a recently described reductive pathway and depends less on the Leloir pathway, which accepts only alpha-D-galactose. We...
متن کاملD-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates.
Lactose (1,4-O-beta-d-galactopyranosyl-d-glucose) is a soluble and economic carbon source for the industrial production of cellulases or recombinant proteins by Hypocrea jecorina (anamorph Trichoderma reesei). The mechanism by which lactose induces cellulase formation is not understood. Recent data showed that the galactokinase step is essential for cellulase induction by lactose, but growth on...
متن کاملA constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina
BACKGROUND One of the primary industrial-scale cellulase producers is the ascomycete fungus, Hypocrea jecorina, which produces and secretes large quantities of diverse cellulolytic enzymes. Perhaps the single most important biomass degrading enzyme is cellobiohydrolase I (cbh1or Cel7A) due to its enzymatic proficiency in cellulose depolymerization. However, production of Cel7A with native-like ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 2 شماره
صفحات -
تاریخ انتشار 2005